TIM-3 Regulates Distinct Functions in Macrophages

نویسندگان

  • Ranferi Ocaña-Guzman
  • Luis Torre-Bouscoulet
  • Isabel Sada-Ovalle
چکیده

The transmembrane protein TIM-3 is a type I protein expressed by sub-types of lymphoid cells, such as lymphocytes Th1, Th17, Tc1, NK, as well as in myeloid cells. Scientific evidence indicates that this molecule acts as a negative regulator of T lymphocyte activation and that its expression is modified in viral infections or autoimmune diseases. In addition to evidence from lymphoid cells, the function of TIM-3 has been investigated in myeloid cells, such as monocytes, macrophages, and dendritic cells (DC), where studies have demonstrated that it can regulate cytokine production, cell activation, and the capture of apoptotic bodies. Despite these advances, the function of TIM-3 in myeloid cells and the molecular mechanisms that this protein regulates are not yet fully understood. This review examines the most recent evidence concerning the function of TIM-3 when expressed in myeloid cells, primarily macrophages, and the potential impact of that function on the field of basic immunology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Immunomodulatory Effects and Mechanisms of Tim-3 Action in the Early Stage of Mice with Severe Acute Pancreatitis

Background: Tim-3 has been considered as an ideal target for the immunotherapy of inflammation, but it is unclear whether Tim-3 also plays an important role in acute pancreatitis (AP), as well. Objective: To identify the immunomodulatory effects and mechanisms of Tim-3 action in the early stages of severe acute pancreatitis in mice. Methods: Ma...

متن کامل

TIM-3 regulates innate immune cells to induce fetomaternal tolerance.

TIM-3 is constitutively expressed on subsets of macrophages and dendritic cells. Its expression on other cells of the innate immune system and its role in fetomaternal tolerance has not yet been explored. In this study, we investigate the role of TIM-3-expressing innate immune cells in the regulation of tolerance at the fetomaternal interface (FMI) using an allogeneic mouse model of pregnancy. ...

متن کامل

Tim-3 Negatively Regulates IL-12 Expression by Monocytes in HCV Infection

T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a newly identified negative immunomodulator that is up-regulated on dysfunctional T cells during viral infections. The expression and function of Tim-3 on human innate immune responses during HCV infection, however, remains poorly characterized. In this study, we report that Tim-3 is constitutively expressed on human resting...

متن کامل

Down-Regulation of Tim-3 in Monocytes and Macrophages in Plasmodium Infection and Its Association with Parasite Clearance

T-cell immunoglobulin and mucin-domain-containing molecule 3 (Tim-3) has complicated roles in regulating monocytes and macrophages in various diseases and it tends to be an inhibitory molecule to facilitate the immune escape of parasites in malaria. However, the mechanisms of Tim-3 mediated responses in monocytes and macrophages in malaria have not been clear. In this study, we found that Plasm...

متن کامل

Tim-3-Expressing CD4+ and CD8+ T Cells in Human Tuberculosis (TB) Exhibit Polarized Effector Memory Phenotypes and Stronger Anti-TB Effector Functions

T-cell immune responses modulated by T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) during Mycobacterium tuberculosis (Mtb) infection in humans remain poorly understood. Here, we found that active TB patients exhibited increases in numbers of Tim-3-expressing CD4(+) and CD8(+) T cells, which preferentially displayed polarized effector memory phenotypes. Consistent with eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016